DT News - Italy - Foto-bio-modulazione in ortodonzia

Search Dental Tribune

Foto-bio-modulazione in ortodonzia

Fig. 1 (a sinistra) - Foto-bio-modulazione (biostimolazione) laser esterna con il manipolo a onda piana (laser a diodo 980 nm). Il fascio è direzionato attraverso la fibra ottica posizionandolo su tutti i settori interessati dal movimento ortodontico. Il trattamento dura 300 secondi.
Gianluigi Caccianiga

Gianluigi Caccianiga

mer. 28 marzo 2018

salvare

Le apparecchiature laser sono state proposte in ortodonzia soprattutto per le loro ottime caratteristiche chirurgiche. In effetti i piccoli interventi eseguiti con i laser richiedono meno o nessun ricorso ai punti di sutura, hanno un decorso molto più delicato e sono ben accettati dai piccoli pazienti. Negli ultimi anni, tuttavia, gli studi sugli effetti foto-bio-modulatori del laser in ortodonzia sono notevolmente aumentati. Molto probabilmente in futuro, il laser verrà utilizzato per la biostimolazione del movimento ortodontico, per ridurre i tempi di trattamento.

Al fine di confermare l’utilità del laser in ortodonzia, una recente revisione ha dimostrato che la foto-bio-modulazione (LLLT: Low Level Laser Therapy) è in grado non solo di ridurre il tempo di trattamento, ma anche il dolore post trattamento ortodontico.

LLLT è semplice da usare, indolore, non ha effetti collaterali e non ha praticamente controindicazioni. Per ottenere risultati positivi, è necessario utilizzare i parametri laser corretti: la quantità di energia assorbita dal dente in movimento può variare a seconda del tipo di laser utilizzato e dei parametri impiegati (lunghezza d’onda, fascio emergente dal manipolo per biostimolazione ad esempio). I laser di lunghezze d’onda comprese tra i 600 e i 1100 nm hanno una migliore penetrazione nei tessuti umani e sono quindi i più efficaci per l’uso nella pratica clinica ortodontica.

Una corretta densità di energia (Fluenza = J/cm2) è della massima importanza per ottenere effetti biologici. Il dosaggio di energia laser segue la legge di Arndt-Schulz: basse dosi stimolano, alte dosi inibiscono. Tuttavia, se si utilizza un dosaggio troppo basso, non è possibile compensare aumentando il tempo di esposizione. Qui è stata percepita la necessità di configurare correttamente i parametri del laser.

Gli effetti del laser sulla biologia ortodontica sono diversi e sono stati dimostrati negli esseri umani, negli animali e nelle colture cellulari, quali la stimolazione del rimodellamento osseo, la riduzione del dolore post-seduta ortodontica, l’aumento di altezza e spessore della gengiva cheratinizzata in denti erotti in mucosa alveolare, la diminuzione del riassorbimento radicolare e delle recidive. Inoltre, non sono stati dimostrati effetti collaterali sistemici per LLLT.

Sembra che LLLT sia in grado di stimolare il rimodellamento osseo, quindi può anche accelerare il movimento ortodontico senza danneggiare i denti e i tessuti circostanti.

L’esatto meccanismo di LLLT sull’osso non è ancora stato completamente compreso. Studi in vitro dimostrano che la luce a una bassa dose di energia viene assorbita dai cromofori intracellulari nei mitocondri, aumentando così la proliferazione cellulare attraverso alterazioni fotochimiche. Questo meccanismo include la promozione dell’angiogenesi, la produzione di collagene, la proliferazione e differenziazione cellulare osteogenica, la respirazione mitocondriale e la sintesi di adenosina trifosfato (ATP).

Diversi studi hanno dimostrato clinicamente come la LLLT possa accelerare il movimento ortodontico con dispositivi ortodontici fissi. D’altra parte, ci sono studi che hanno evidenziato gli effetti della LLLT sul movimento dei denti nei trattamenti ortodontici con mascherine invisibili.

La biostimolazione laser esterna con fibra ottica “Onda Piana”, ideata dal Prof. Alberico Benedicenti (lunghezza d’onda di 980 nm e onda continua con una potenza di uscita di 1-3 Watt) sembra avere risultati predicibili. Il protocollo, che prevede 150 secondi d’irradiazione per ciascuna arcata, con movimento oscillatorio e continuo da parte dell’operatore su tutti i denti delle due arcate, sembra essere clinicamente efficace (Fig. 1).

Sfortunatamente, il parametro “operatore” è presente in tutti i protocolli proposti in letteratura. Sarebbe interessante avere un dispositivo in grado di avere un’applicazione semplice e riproducibile, operatore indipendente.

ATP38®, un dispositivo di biostimolazione caratterizzato da pannelli che emettono una combinazione di 8 diverse lunghezze d’onda, da 400 a 820 nm, sembra avere queste caratteristiche (Fig. 2). Semiconduttori collimati policromatici (PCSC) emettono luci policromatiche fredde, promuovendo il metabolismo cellulare e producendo un effetto stimolante sulla produzione di ATP (adenosina trifosfato, la molecola di energia principale della cellula, che costituisce l’unità strutturale del DNA).

Le PCSC non creano calore. Le cellule irradiate sono simultaneamente esposte a diverse lunghezze d’onda, intensità e pulsazioni a seconda del tipo di trattamento, sviluppato sulla base di protocolli scientificamente testati. L’ATP (adenosina trifosfato) è sintetizzata da una proteina chiamata citocromo C ossidasi. Questa proteina è composta da ferro e rame, il che la rende ipersensibile ai fotoni. Non appena un fotone la irradia, si attiva la produzione di ATP e la cellula viene rigenerata. Il complesso del citocromo C ossidasi mitocondriale funge da catalizzatore per il trasferimento di elettroni all’ossigeno molecolare durante la fosforilazione ossidativa. ATP38® usa 8 lunghezze d’onda corrispondenti ai picchi di assorbimento di citocromo C ossidasi e porfirina. ATP38®, in grado di applicare l’energia in modo uniforme in tutte le zone interessate dall’apparecchiatura ortodontica, le arcate mascellare e mandibolare e le articolazioni temporo-mandibolari, di fatto può essere considerata “operatore indipendente”.

In sintesi, in ortodonzia, la foto-bio-modulazione consente di:

-           Ridurre dolore post-trattamento (dopo l’applicazione di dispositivi fissi, dopo il cambiamento di un arco ortodontico o di mascherine allineatrici);

-           Accelerare il trattamento ortodontico, riducendo la durata dei trattamenti ortodontici fissi e mobili fino al 30% .

Sarebbe opportuno nel prossimo futuro impostare protocolli di ricerca comuni in diverse università con parametri applicativi identici, che possano portare a risultati scientificamente rilevanti e ripetibili, al fine di poter proporre la foto-biomodulazione in ortodonzia come “device” fondamentale per ridurre l’invasività della terapia ortodontica.

 

Didascalia

  • Camacho AD, Velásquez Cujar SA. Dental movement acceleration: Literature review by an alternative scientific evidence method. World J Methodol. 2014 Sep 26;4(3):151-62. doi: 10.5662/wjm.v4.i3.151.
  • Marines Vieira, Arnaldo Pinzan et Al. Photo medicine and laser surgery, Sistematic Literature Review: Influence of LLLT on orthodontic movement and pain control in humans. volume 32, number1,2014 Photomedicine and Laser Surgery Volume 32, Number 11, 2014 DOI: 10.1089/pho.2014.3789.
  • Long H1, Zhou Y, Xue J, Liao L, Ye N, Jian F, Wang Y, Lai W. The effectiveness of lowlevel laser therapy in accelerating orthodontic tooth movement: a meta-analysis. Lasers Med Sci. 2015 Apr;30(3):1161-70. doi: 10.1007/s10103-013-1507-y.
  • Seifi M, Shafeei HA, Daneshdoost S, Mir M. Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci. 2007 Nov;22(4):261-4.
  • Ren C1, McGrath C, Yang Y. The effectiveness of low-level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis. Lasers Med Sci. 2015 Mar 24.
  • Massoud Seifi,1 Faezeh Atri,2 and Mohammad Masoud Yazdani Effects of low-level laser therapy on orthodontic tooth movement and root resorption after artificial socket preservation. Dent Res J (Isfahan). 2014 Jan-Feb; 11(1): 61–66.
  • Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP. Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:693–700.
  • Kim SJ, Moon SU, Kang SG, Park YG. Effects of low-level laser therapy after Corticision on tooth movement and paradental remodeling. Lasers Surg Med. 2009;41:524–33.
  • Gianluigi Caccianiga, Giancarlo Cordasco, Alessandro Leonida, Paolo Zorzella, Nadia Squarzoni, Francesco Carinci, Claudia Crestale Periodontal effects with self ligating appliances and laser biostimulation Dent Res J (Isfahan) 2012 December; 9(Suppl 2): S186–S191. doi: 10.4103/1735-3327.109750.
  • Mizutani K, Musya Y, Wakae K, Kobayashi T, Tobe M, Taira K, et al. A clinical study on serum prostaglandin E2 with low-level laser therapy. Photomed Laser Surg. 2004;22:537–9.
  • Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: A preliminary study. Lasers Surg Med. 2004;35:117–20.
  • Salehi P, Heidari S, Tanideh N, Torkan S. Effect of low-level laser irradiation on the rate and short-term stability of rotational tooth movement in dogs. Am J Orthod Dentofacial Orthop. 2015 May;147(5):578-86. doi: 10.1016/j.ajodo.2014.12.024.
  • Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res. 2006;9:38–43.
  • Seifi M, Shafeei HA, Daneshdoost SH, Mir M. Effects of two types of low-level-laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Laser Med Sci. 2007;22:261–4.
  • Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci. 2014 Fall;5(4):163-70.
  • Seifi M, Vahid-Dastjerdi E.Tooth movement alterations by different low level laser protocols: a literature review. J Lasers Med Sci. 2015 Winter;6(1):1-5. Review.
  • Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014 Spring;5(2):58-62. Review.
  • Dungel P, Hartinger J, Chaudary S, Slezak P, Hofmann A, Hausner T, Strassl M, Wintner E, Redl H, Mittermayr R. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med. 2014 Dec;46(10): 773-80. doi: 10.1002/lsm.22299. Epub 2014 Oct 31.
  • Massotti FP, Gomes FV, Mayer L, de Oliveira MG, Baraldi CE, Ponzoni D, Puricelli E. Histomorphometric assessment of the influence of low-level laser therapy on peri-implant tissue healing in the rabbit mandible. Photomed Laser Surg. 2015 Mar;33(3):123-8. doi: 10.1089/pho.2014.3792.
  • Leonida A, Paiusco A, Rossi G, Carini F, Baldoni M, Caccianiga GEffects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three-dimensional biomatrix: in vitro pilot study. Lasers in medical science. 28(1): 125-32.
  • Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, Parizotto NA, Humbling MR. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem Photobiol. 2015 Mar-Apr;91(2):411-6. doi: 10.1111/php.12397.
  • Buravlev EA, Zhidkova TV, Vladimirov YA, Osipov AN. Effects of low-level laser therapy on mitochondrial respiration and nitrosyl complex content. Lasers Med Sci. 2014 Nov; 29(6):1861-6. doi: 10.1007/s10103-014-1593-5. Epub 2014 May 24.
  • Kubota J. Effects of diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med Sci. 2002;17(3):146-53.
  • Kobu Y. Effects of infrared radiation on intraosseous blood flow and oxygen tension in the rat tibia. Kobe J Med Sci. 1999;45:27–39.
  • Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000;26:282–91.
  • Hudson DE1, Hudson DO, Wininger JM, Richardson BD. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg. 2013 Apr;31(4):163-8. doi: 10.1089/pho.2012.3284.
  • Nimeri G1, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment--a frontier in orthodontics. Prog Orthod. 2013 Oct 29;14:42. doi: 10.1186/2196-1042-14-42.
  • Habib FA, Gama SK, Ramalho LM, Cangussu MC, Santos Neto FP, Lacerda JA, et al. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Photomed Laser Surg. 2010;28:S31–5.
  • Hakki SS, Bozkurt SB. Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts. Photomed Laser Surg. 2010;28:82.
  • Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, et al. Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Photomed Laser Surg. 2010;28:S167–72. [PubMed: 20662028]
  • Luciana Oliveira Pereira , João Paulo Figueirò Longo, Ricardo Bentes Azevedo “Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp”. Archives of oral biology 57 (2012) 1079–1085.
  • Kneebone WJ, Cnc DIH, Fiama D. Practical applications of low level laser therapy. Pract Pain Manage 2006;6(8): 34–40.
  • Pretel H, Oliveira JA, Lizarelli RFZ, Ramalho LTO. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys. Laser Phys Lett 2009;6(2):149–58.
  • Godoy BM, Arana-Chavez VE, Nunez SC, Ribeiro MS. Effects of low-power red laser on dentine-pulp interface after cavity preparation. An ultrastructural study. Arch Oral Biol 2007;52(9):899–903.
  • Eduardo FP, Bueno DF, Freitas PM, Marques MM, Passos- Bueno MR, Eduardo CP, et al. Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 2008;40:433–8.
  • Huang TH1, Liu SL, Chen CL, Shie MY, Kao CT. Low-level laser effects on simulated orthodontic tension side periodontal ligament cells. Photomed Laser Surg. 2013 Feb;31(2): 72-7. doi: 10.1089/pho.2012.3359. Epub 2013 Jan 17.
  • Soares DM1, Ginani F, Henriques AG, Barboza CA. Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci. 2013 Sep 7. [Epub ahead of print]
  • Wu Y, Wang J, Gong D, Gu H, Hu S, Zhang H (2012) Effects of low- level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Laser Med Sci 27(2):509–519.
  • Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of lowlevel laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts: an in vitro study. Laser Med Sci 27(2):423–430.
  • Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low-level laser irradiation on adult human adipose-derived stem cells. Lasers Med Sci 23:277–282.
  • De Villiers JA, Houreld NN, Abrahamse H (2011) Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 h and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev 7(4):869–882.
  • Nanci A. Ten Cate’s oral histology: development, structure, and function. St Louis: Mosby, 2007.
  • Wu JY1, Chen CH, Yeh LY, Yeh ML, Ting CC, Wang YH. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci. 2013 Jun;5(2):85-91. doi:10.1038/ijos.2013.38. Epub 2013 Jun 21.
  • Hou JF, Zhang H, Yuan X et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 2008; 40(10): 726–733.
  • SoleimaniM, AbbasniaE, FathiMetal. The effects of Low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 2012; 27(2): 423–430.
  • Silva AP, Petri AD, Crippa GE et al. Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers Med Sci 2012; 27(4): 777–783.
  • Shimizu N, Yamaguchi M, Goseki T et al. Inhibition of prostaglandin E2 and interleukin 1-beta production by low- power laser irradiation in stretched human periodontal ligament cells. J Dent Res 1995; 74(7): 1382–1388.
  • Ozawa Y, Shimizu N, Abiko Y. Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 1997; 21(5): 456–463.
  • Yu Y, Mu J, Fan Z et al. Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol 2012; 137(4): 513–525.
  • Lee JH, Um S, Jang JH et al. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res 2012; 348(3):475–484.
  • Xia L, Zhang Z, Chen L et al. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and beta-TCP bioceramics. Eur Cell Mater 2011;22: 68–82; discussion 83.
  • Khalid M. AlGhamdi, Ashok Kumar, Noura A Moussa .Low-laser therapy: a useful technique for enhancing the preliferation of various cultured cells. Laser Med Sci 2012 27:237-249.
  • Fernanda de P. Eduardo, Daniela F. Bueno, Patricia M. de Freitas, PhD, Màrcia Martins Marques. Stem Cell Proliferation Under Low Intensity Laser Irradiation: A Preliminary Study. Lasers in Surgery and Medicine 40:433– 438 (2008).
  • Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI)promotes proliferation of mesenchymal and cardiac stemcells in culture. Lasers Surg Med 2007;39:373–378.
  • Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9: 641–650.
  • Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 1997;12:1335–1347.
  • Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000;97:13625–13630.
  • Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003;18:696–704.
  • Kerkis I, Kerkis A, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cells markers. Cell Tissues Organs 2006;184(3–4):105–116.
  • De Mendonc A, Costa AM, Bueno DF, Kerkis I, et al. Reconstruction of large cranial defects in non- immunosupressed rats with human stem cells: A preliminary report. J Craniofac Surg 2008 Jan;19(1);204–210.
  • Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005;80:836–842.
  • Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–4295.
  • Woodruff LD, Bounkeo JM, Brannon WM, et al. The efficacy of laser therapy in wound repair: A meta-analysis of the literature. Photomed Laser Surg 2004 Jun;22(3):241–247.
  • Secco M, Zucconi E, Vieira NM, Fogaça LLQ, Cerqueira A, Carvalho MDF, Jazedje T, Okamoto OK, Muotri AR, Zatz M. Multipotent stem cells from umbilical cord: Cord is richer than blood. Stem Cells 2008 Jan;26(1):146–150.
  • Mester E, Mester AF, Mester A. The biomedical effects of laser application. Laser Surg Med 1985;5:31–39.
  • Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 2005;23: 161–166.
  • Karu T. Laser biostimulation: A photobiological phenomenon. J Photochem Photobiol B 1989;3:638–640.
  • Karu T. Photobiology of low-power laser effects. Health Phys 1989;56:691–704.
  • Friedmann H, Lubart R, Laulicht I, Rochkind S. A possible explanation of laser-induced stimulation and damage of cell cultures. J Photochem Photobiol B 1991;11: 87–91.
  • Leonida A, Paiusco A, Rossi G, Carini F, Baldoni M, Caccianiga G. Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three- dimensional biomatrix: in vitro pilot study. Lasers Med Sci DOI 10.1007/s10103-012-1067-6.
  • La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V, De Rosa A, Papaccio G, Tirino V, Laino L.:Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. J Dent. 2014 Jul;42(7):761-8.
  • Mitsiadis TA, Feki A, Papaccio G, Catón: Dental pulp stem cells, niches, and notch signaling in Tooth Injury. J. Adv Dent Res. 2011 Jul;23(3):275-9.
  • Tirino V, Paino F, De Rosa A, Papaccio G: Identification, Isolation, Characterization, and Banking of Human Dental Pulp Stem Cells.. Methods Mol Biol. 2012;879:443-63.
  • D’aquino R, De Rosa A, Laino G, Caruso F, Guida L, Rullo R, Checchi V, Laino L, Tirino V, Papaccio G.: Human Dental Pulp Stem Cells: From Biology to Clinical Applications. J Exp Zool B Mol Dev Evol. 2009 Jul 15;312B(5):408-15.
  • Caccianiga G, Paiusco A, Perillo L, Nucera R, Pinsino A, Maddalone M, Cordasco G, Lo Giudice A (2017). Does Low-Level Laser Therapy Enhance the Efficiency of Orthodontic Dental Alignment? Results from a Randomized Pilot Study. Photomedicine and laser surgery, vol. 35, p. 421-426, ISSN: 1557-8550, doi:10.1089/pho.2016.4215.
  • Caccianiga G, Crestale C, Cozzani M, et al. Low-level laser therapy and invisible removal aligners. J Biol Regul Homeost Agents 2016;30 (2 Suppl 1):107–113.

 

To post a reply please login or register
advertisement
advertisement